

#### "Total Mass Accounting in Advanced Liquid-Fueled Reactors"

PI: L. Raymond Cao,
Professor, Nuclear Engineering Program
The Ohio State University

Co-PI: Dr. Shelly Li, University of Utah; Dr. Praneeth Kandlakunta, OSU



➤ How to measure and monitor the mass of molten salt in fuel salt or coolant salt

reactor systems?

- It's hot
- It's corrosive
- It's radioactive
- It's non-accessible
- Density could change all the time (burn-up, refueling etc)



- Important safeguard requirement for MC&A of advanced reactors
- ➤ We propose to add radioactive tracer in which the mass of total volume of salt may be determined radioactive tracer dilution (RTD) method.



#### The principle of RTD

Tracer with activity A1 is added to salt of unknown mass, then sampled with known mass and activity of A2.



#### <sup>22</sup>Na has been selected as the proper radioactive tracer.

- It undergoes beta+ decay (non-fission product characteristic)
- known chemical compatibility with actinides and fission products in molten chloride and fluoride salts
- Availability and half life (2.6 y) for handling
- Emits 1274.54 keV gamma-ray (99.94%), high enough to be outside of the Compton plateau of many fission products' gamma-rays in a gamma energy spectrum
- ➢ Only known overlapped peak is 1274.43 keV from¹5⁴Eu
- High thermal neutron capture cross-section helps to remove Na-22 after spiking

### Gamma Spectroscopy of non-fuel salt from previous proof-of-concept study

#### Gamma Spectrum from 5 g of salt with 137Cs, 154Eu and 22Na



Lei Cao et al. "Determination of molten salt mass using Na-22 tracer mixed with Eu-154 and Cs-137." Journal of Radioanalytical and Nuclear Chemistry 318 (2018): 457-463. The objective of this research is to validate a radioactive tracer dilution (RTD) method for the irradiated fuel-bearing molten salt mass determination to evaluate the possibilities of its deployment in NMA scenarios, e.g., in molten salt loop in LFMSRs.

#### Questions to be answered:

- Q1.) Are there any other unknown interferences at 1274 keV?
- Q2.) Will there be high deadtime caused by other fission products during gamma counting?
- Q3.) How to do sampling?
- Q4.) How long should IAEA inspector wait before counting?

#### MgCl<sub>2</sub>-KCl-UCl<sub>3</sub> salt for irradiation (UoU)

- 13.8 g of MgCl<sub>2</sub>-KCl-UCl<sub>3</sub> (DU) fuel salt was prepared at the University of Utah
- High purity (99.99%) MgCl<sub>2</sub> and KCl was acquired through commercial vendors and mixed with a 0.3:0.7 molar ratio.
- UCl<sub>3</sub> was synthesized by using DU metal rod and FeCl<sub>2</sub> in MgCl<sub>2</sub>-KCl at ~500°C.
- Salt samples were taken and measured by ICP-MS, the U concentration was determined to be 12.16 wt%. The FeCl<sub>2</sub> concentration is 0.045 wt%. UCl<sub>3</sub> is 17.6 wt%.
- U-235 concentration in the entire salt is
   (2.76 mg/13.8 g) = 200 ppm
- MgCl<sub>2</sub>-KCl-UCl<sub>3</sub> salt will be packed in an argon glovebox and shipped to OSU by a commercial carrier



Schematic for preparing UCl<sub>3</sub> salt from DU metal rod and NaCl-KCl-FeCl<sub>2</sub>

Huan Zhang et al 2021, J. Electrochem. Soc. 168 056521

### **Gamma spectrum simulation by ORIGEN** burnup

- ORIGEN to predict the radionuclide inventory after the irradiation.
- Took all nuclides with activity greater than 10 μCi (a couple dozen).
- For each of those, listed all decay gammas with intensity greater than 1% (~120 gammas).
- Combining the nuclide activity and gamma intensity gives the gamma emission rate
- Then used a representative efficiency curve for the HPGe detector to predict the relative peak count rate for each energy.

#### The simulated spectrum

#### 1 week after irradiation



#### Caveats:

- Relative count rate, not absolute.
- No Compton continuum.
- A hundred other nuclides with lower activities aren't included

#### The simulated spectrum





# **Newly build OSU fuel salt processing facility at Nuclear Reactor Laboratory**



- > A sample of 100 μL of liquid source, <sup>22</sup>NaCl, was transferred by pipette to the empty vial.
- The vial was heated in an oven at 60°C for one hour.
- > The temperature was then increased to 80°C and the vial was heated for another 30 minutes to complete the evaporation.
- After allowing the vial to cool, it was covered and transferred to the HpGe, a spectrum was collected with the vial on the platform used for the calibration.
- > A quartz disc (thickness 1.5 and 3 mm) positioned was on a platform approximately 38 cm above the detector endcap to calibrate self-attenuation of the quartz bottle. A traceable point source of Na-22 was then placed on the quartz disc.

Table. Na-22 assay

| Count Date:     | 03/10/23 | Uncert |
|-----------------|----------|--------|
| Live Time (s):  | 2000.8   | (%)    |
| Peak Counts:    | 11330    | 0.94   |
| Rate (cps):     | 5.663    | 0.94   |
| Peak Eff (pcm): | 9.01     | 1.35   |
| Em Rate (kgps): | 62.8     | 1.64   |
| Activity (μCi): | 1.70     | 1.64   |



Sealed double capsuled salt sample

**HpGe** detector

### Step 2: Adding fuel salt for in-core irradiation

| Quartz Bottle<br>Mass    | 10.99 g          |
|--------------------------|------------------|
| Added <sup>22</sup> NaCl | 0.1 mL (1.7 μCi) |
| Fuel salt mass           | 6.065 g          |

U-235 in sample 1.21 mg



Fuel salt is being added into quartz bottle for irradiation

#### MgCl<sub>2</sub>-KCl-UCl<sub>3</sub> (DU) composition:

- U-235 concn in salt sample at 0.02 wt%
- U-238 concn in salt sample at 12.14 wt%.
- U-235 enrichment 0.2%



### Step 3: Melting fuel salt to mix with <sup>22</sup>NaCl



#### **Heating Scheme in Ar glovebox:**

- Temp raised to ~ 500°C for 30 min
- Verified in molten state
- Continued heating 500-550°C for 2 hours (to allow mixing of <sup>22</sup>NaCl with fuel salt)



Once cooled, the bottle was weighed and crimp sealed with Grafoil/aluminum cap.



# Step 3: Preparing encapsulation of fuel salt and <sup>22</sup>Na for in-core irradiation





- Silica insulation inserted as cushion above quartz bottle.
- Initial spectroscopy conducted at heights of 38 cm and 67 cm above the HPGe detector end cap.
- Measurements were repeated with a 0.1 inch thick lead sheet underneath, which will be used for reducing dead time at post-irradiation.





#### **Step 4: In-core irradiation**

### Fission product gasses produced from 15 grams of salt mixture (ORIGEN)

|        | Activity | Activity | Half-Life | ı        | # atoms  | Moles    |
|--------|----------|----------|-----------|----------|----------|----------|
| Nuclid | _        | _        |           |          |          |          |
| е      | (Ci)     | (Bq)     | (days)    | (1/s)    |          | (mol)    |
| I-131  | 3.91E-05 | 1.45E+06 | 8.025     | 1.00E-06 | 1.45E+12 | 2.40E-12 |
| I-132  | 1.44E-04 | 5.34E+06 | 0.096     | 8.39E-05 | 6.36E+10 | 1.06E-13 |
| I-133  | 1.88E-03 | 6.97E+07 | 0.868     | 9.24E-06 | 7.54E+12 | 1.25E-11 |
| I-134  | 3.71E-02 | 1.37E+09 | 0.036     | 2.20E-04 | 6.25E+12 | 1.04E-11 |
| I-135  | 1.17E-02 | 4.32E+08 | 0.149     | 5.38E-05 | 8.03E+12 | 1.33E-11 |
| Kr-85m | 3.16E-03 | 1.17E+08 | 0.187     | 4.30E-05 | 2.72E+12 | 4.53E-12 |
| Kr-87  | 1.93E-02 | 7.16E+08 | 0.053     | 1.51E-04 | 4.73E+12 | 7.85E-12 |
| Kr-88  | 1.40E-02 | 5.18E+08 | 0.118     | 6.82E-05 | 7.60E+12 | 1.26E-11 |
| Xe-    |          |          |           |          |          |          |
| 131m   | 3.24E-10 | 1.20E+01 | 11.840    | 6.78E-07 | 1.77E+07 | 2.94E-17 |
| Xe-133 | 3.97E-06 | 1.47E+05 | 5.248     | 1.53E-06 | 9.60E+10 | 1.59E-13 |
| Xe-    |          |          |           |          |          |          |
| 133m   | 7.38E-07 | 2.73E+04 | 2.198     | 3.65E-06 | 7.49E+09 | 1.24E-14 |
| Xe-135 | 6.23E-04 | 2.31E+07 | 0.381     | 2.11E-05 | 1.09E+12 | 1.82E-12 |
| Xe-    |          |          |           |          |          |          |
| 135m   | 3.72E-03 | 1.38E+08 | 0.011     | 7.56E-04 | 1.82E+11 | 3.03E-13 |
|        |          |          |           |          | Total =  | 6.61E-11 |



#### Picture of in-core irradiation at OSURR

Thermal Neutron Flux: 6.0 x 10<sup>12</sup> n/cm<sup>2</sup>/s

Total Neutron Flux: 1.1x 10<sup>13</sup> n/cm<sup>2</sup>/s

Irradiation time: 1 hour

Fluence: 3.96 x 10<sup>16</sup> n/cm<sup>2</sup>

#### **Step 5: Post-irradiation results**

#### Dose rates after 10 days



10 cm from centerline:

| Gamma        | 13.3 mrem/h |
|--------------|-------------|
| Gamma + Beta | 15.4 mrem/h |



30 cm from centerline:

| Gamma        | 1.76 mrem/h |
|--------------|-------------|
| Gamma + Beta | 1.96 mrem/h |



#### Step 6: Post-irradiation results (10 days)

### Irradiated fuel salt inside double encapsulation



Open Air (67.63 cm from detector)

Dead Time: 3.38%

Pb (2" x 2" x 0.1" inch) shielded Dead Time: 0.66%

# THE OHIO STATE UNIVERSITY





10-days post-irradiation decay

Gamma spectrum taken at OSU-NRL for 6.065 grams (1.21 mg of U-235) of salt irradiated at 10<sup>16</sup> n/cm<sup>2</sup>





# **Zoom-in region of fuel salt at post 21-days irradiation**





# **Zoom-in Na-22 peak region of fuel salt at post 10-days irradiation**

- Na-22 (1274.5 keV) neighborhood is cleared off any sign of interferences with current burn-up
- Fe-59 comes from impurity in salt



#### MgCl<sub>2</sub>-KCl-UCl<sub>3</sub> salt for irradiation (UoU)

- 13.8 g of MgCl<sub>2</sub>-KCl-UCl<sub>3</sub> (DU) fuel salt was prepared at the University of Utah
- High purity (99.99%) MgCl<sub>2</sub> and KCl was acquired through commercial vendors and mixed with a 0.3:0.7 molar ratio.
- UCl<sub>3</sub> was synthesized by using DU metal rod and FeCl<sub>2</sub> in MgCl<sub>2</sub>-KCl at ~500°C.
- Salt samples were taken and measured by ICP-MS, the U concentration was determined to be 12.16 wt%. The FeCl<sub>2</sub> concentration is 0.045 wt%. UCl<sub>3</sub> is 17.6 wt%.
- U-235 concentration in the entire salt is
   (2.76 mg/13.8 g) = 200 ppm
- MgCl<sub>2</sub>-KCl-UCl<sub>3</sub> salt will be packed in an argon glovebox and shipped to OSU by a commercial carrier



Schematic for preparing UCl<sub>3</sub> salt from DU metal rod and NaCl-KCl-FeCl<sub>2</sub>

Huan Zhang et al 2021, J. Electrochem. Soc. 168 056521



#### THE OHIO STATE UNIVERSITY

### **Heating Chamber and off-gasing**





#### **Salt extraction apparatus**













Photos showing venting and alignment apparatus for sampling within central tube

#### **Fuel salt sample extraction practice**



#### **Fuel salt sample extraction practice**







# Our facility is capable of off-gassing study





#### **Summary**

- 6 gram of salt (1.21 mg of U-235) was successfully irradiated at OSU Nuclear Reactor (3.96 x 10<sup>16</sup> n/cm<sup>2</sup>), gamma spectra of fission products with added Na-22 tracer was acquired
- No other interferences peak identified. Good News! Eu-154 interferences was well understood, and it does not present an issue due to low burn-up
- A thin piece of lead between the source and detector is effective in reducing deadtime, 121 keV Eu-154 is blocked, but higher energy of Eu-154 at 723 keV is still unobscured for spectrum correction
- This could be a real-time method, depending on burn-up, deadtime from short-lived fission products, sampling mass, etc.
- Demonstrated the fuel salt irradiation experiment (first since MSRE?)

### THE OHIO STATE UNIVERSITY Near-term and long-term plan

- Next step (by 12/31/2023) is to increase burn-up and test irradiated fuel salt sample extraction
  - DU to natural U
  - > 1 hour to 7 hours irradiation
  - Reduce Na-22 from 1.7 μCi to ~ 100 nCi
- Future study is to find out Na-22 burn-up and large volume molten salt testing for an extended burn-up (proposing new project)
  - Na-22 neutron capture x-section is 29,260 barn @ 25 meV
  - It will be burned away after x days of spiking self elimination!
  - Reached out to Abilene Christian university
  - Simulate and even measure in a large-scale fuel salt system



### Acknowledgments



U.S. Department of Energy

Advanced Reactor Safeguard Program









Raymond Cao

Matt Van Zile

Andrew Kauffman









Shelly Li



**Emily Gordon** 



Praneeth Kandlakunta

Nuclear Reactor Lab



### Thank you for your attention!



# Challenges with tracer burn-up

➤ Na-22 has a significant neutron absorption cross-section



### Radioisotope Selection

|                             | Na-22                       | Co-60               | Na-24                         | <b>Br-82</b>                |
|-----------------------------|-----------------------------|---------------------|-------------------------------|-----------------------------|
| Decay mode                  | β+                          | β-                  | β-                            | β-                          |
| Main<br>gamma<br>energy/keV | 1274.54                     | 1173.23;<br>1332.50 | 1368.63;<br>2754.01           | 554.35; 619;<br>776.52;1044 |
| Half life                   | 2.6018 y                    | 1925 d              | 14.977 h                      | 35.28 h                     |
| Comments                    | Not a<br>fission<br>product | Selective bounding? | T <sub>1/2</sub> too<br>short | T <sub>1/2</sub> too short  |

# **Challenges: Off-gas Constituents**

**Table 1**Potential species in the cover gas of an MSR.

| Type of cover gas constituent                 | Example species                                                                                                                                                                                                                                                                 |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mists, aerosols, and particles                | Salt residues, graphite debris for graphite-<br>moderated fluoride systems, corrosion products, and<br>noble metals (e.g., Ru, Pd, Rh)                                                                                                                                          |
| Gases and volatile species                    | <sup>3</sup> HF, HF, F <sub>2</sub> , Cl <sub>2</sub> , Br <sub>2</sub> , I <sub>2</sub> , Ar, interhalogens (e.g., ICl, IF <sub>5</sub> , IF <sub>7</sub> ), volatile halides, and the decay products (e. g., Cs, Ba, Rb, Sr, La, Br, I, Se, Te) (Ostvald et al., 2009)        |
| Tritium                                       | $^3$ H <sub>2(g)</sub> , $^3$ HH <sub>(g)</sub> , $^3$ HF <sub>(g)</sub> , $^3$ HF <sub>(l)</sub> , and possibly $^3$ HHO <sub>(g)</sub> and/or $^3$ H <sub>2</sub> O <sub>(g)</sub>                                                                                            |
| Short-lived fission gases and their daughters | $^{139}$ Xe $t_{1/2} = 39.5$ s, $^{137}$ Xe $t_{1/2} = 3.83$ min, $^{135m}$ Xe $t_{1/2} = 15.3$ min, $^{135}$ Xe $t_{1/2} = 9.1$ h, $^{133m}$ Xe $t_{1/2} = 2.19$ d, $^{133}$ Xe $t_{1/2} = 5.25$ d, $^{90}$ Kr $t_{1/2} = 32.3$ s, $^{89}$ Kr $t_{1/2} = 3.18$ min, $^{88}$ Kr |
| Longer-lived radionuclides                    | $t_{1/2} = 2.84 \text{ h}$ $t_{1/2} = 1.57 \times 10^7 \text{ y},  ^{79}\text{Se } t_{1/2} = 6.5 \times 10^4 \text{y},  ^{85}\text{Kr}$ $t_{1/2} = 10.7 \text{ y},  ^{36}\text{Cl } t_{1/2} = 3 \times 10^5 \text{ y}$                                                          |

**Source:** Andrews, Hunter et al. "Review of molten salt reactor off-gas management considerations." Nuclear Engineering and Design **385** (2021): 111529.

39